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Abstract. The ground states of interface polarons in a realistic heterojunction potential are investigated by
considering the bulk and the interface optical phonon influence. A self-consistent heterojunction potential
is used and an LLP-like method is adopted to obtain the polaron effect. The numerical computation has
been done for the Zn1−xCdxSe/ZnSe system to obtain the polaron ground state energy, self energy and
effective mass parallel to the interface. A simplified coherent potential approximation is developed to obtain
the parameters of the ternary mixed crystal and the energy band offset of the heterojunction. It is found
that at small Cd concentration the bulk longitudinal optical phonons give the main contribution for lower
areal electron densities, whereas the interface phonon contribution is dominant for higher areal electron
densities. The interface polaron effect is weaker than the effect obtained by the three dimensional bulk
phonon and by the two dimensional interface phonon models.

PACS. 73.40.Lq Other semiconductor-to-semiconductor contacts, p− n junctions, and heterojunctions –
71.38.+i Polarons and electron-phonon interactions – 63.20.kr Phonon-electron and phonon-phonon
interactions

1 Introduction

One of the consequences of the presence of the inter-
face in a semiconductor heterojunction is that the con-
duction electrons are confined near it and these confined
electrons have a two dimensional (2D) nature. The po-
laron effect associated with the electron-interface-phonon
interaction needs to be considered. In general, there are
enhanced polaron effects in lower dimensional systems.
A 2D bulk phonon approximation was used to simplify
the exact phonon modes in discussions of the 2D polaron
ground state energy [1,2], the cyclotron resonance (CR)
[3,4], and the 2D bound polarons problem [5]. The
electron-phonon interaction of a realistic 2D system was
overestimated in those works. In later work the interface
polaron CR [6] and the electrophonon resonances [7] were
discussed by only considering the influence of the three di-
mensional (3D) bulk longitudinal optical (LO) phonons.
On the other hand, some authors discussed the polaron
effects in heterojunctions [8,9] using a single effective
interface-optical (IO) phonon branch to approximate the
influence of IO phonons. However, this mechanism does
not reflect the actual properties of IO phonon modes and
needs to be improved. In the appearance of a detailed
electron-phonon interaction mechanism in semicomductor
heterostructures [10–14], it was found that the IO phonon
mode frequencies depend on both LO and transverse opti-
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cal (TO) bulk phonon frequencies. Thus the effects of the
IO phonons as well as of the LO phonons were included
in subsequent studies [15,16].

Taking both the bulk LO phonons and IO phonons into
account and considering the interface as an infinite bar-
rier, Degani and collaborators investigated interface po-
larons [15] in AlAs/GaAs heterojunctions, as well as inter-
face bound polarons [16] in AlAs/GaAs and GaAs/GaSb
systems under the influence of electric fields. Ban and
coworkers obtained the 2D limit results of the IO phonon
influence on the ground states [17] and CR [18] of the in-
terface polarons in binary semiconductor heterojunctions.
These authors [15–18] pointed out the significant effects
of the actual IO phonons.

Recently, the exciton properties of Zn1−xCdxSe/ZnSe
heterostructures have attracted much attention [19–21]
since the blue-light emitter based on such II-VI com-
pounds has been realized and the optoelectric devices
within visible short-wave length spectrum region are po-
tentially applicable. The optical phonons may play an
important role on the binding energy of excitons in
Zn1−xCdxSe/ZnSe quantum wells [20]. On the other hand,
the basic understanding on the polaron effects in these het-
erostructures still lack and further investigation is needed.

In this paper, we discuss the influence of the bulk
LO and IO phonons on the electronic ground states in
semiconductor heterojunctions. For the quasi 2D elec-
trons near the interface a realistic heterojunction po-
tential is obtained using a self-consistent calculation
[22,23] instead of an infinite barrier approximation [15]
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since the electron penetration into the barrier can not be
neglected for heterojunctions with small ratio of the in-
terface electron energy to the conduction band offset. For
instance, for a Cd concentration region between x = 0.05
to 0.2 of a Zn1−xCdxSe/ZnSe heterojunction, the conduc-
tion band offset ranges between 50 meV and 200 meV [19]
and our calculated interface polaron ground state energy
ranges between 25 meV and 35 meV for electron den-
sity Ns = 4 × 1011 cm−2 and depletion charge density
Nd = 1× 1010 cm−2. The motion of the conduction elec-
trons in the direction parallel to the interface can be de-
scribed by plane waves and the motion in the direction
perpendicular to the interface becomes quantized due to
the localization effect of the heterojunction potential. A
one subband model is chosen here, without loss of gener-
ality, to describe the motion of the ground state electrons
in the direction perpendicular to the interface. A modi-
fied LLP [15,24] unitary transformation is performed on
the Hamiltonian of the electron-phonon interacting sys-
tem to obtain the polaron self energy and effective mass
parallel to the interface in a variational way. In order to
perform the computation on the Zn1−xCdxSe/ZnSe het-
erojunction, a simplified coherent potential approximation
(SCPA) [25–27] is developed here to obtain the bulk LO
phonon frequency, the dielectric constants, the electron ef-
fective mass and the energy band gap of the ternary mixed
crystal (TMC) Zn1−xCdxSe. The numerical result is given
for Zn1−xCdxSe/ZnSe heterojunction with Cd concentra-
tion 0.05 ≤ x ≤ 1. For this situation, we demonstrate that
the polaron effects are weakened even without considering
the screening effects [28]. Our work is organized as follows:
in Section 2, the Hamiltonian of the heterojunction and
variational method based on unitary transformations de-
riving phonon contribution are discussed. In Section 3, the
SCPA is introduced. The numerical result and discussion
are given in Section 4. Finally, the conclusion is given in
Section 5.

2 Hamiltonian and variational method

We consider a heterojunction consisting of two semicon-
ductors with material 1 (Zn1−xCdxSe) for z > 0 and mate-
rial 2 (ZnSe) for z < 0. The interface of the heterojunction
is chosen as the x − y plane. For a finite heterojunction
potential, conduction band electrons in material 1 (chan-
nel side) may penetrate into material 2 (barrier side). The
Hamiltonian of an electron in a heterojunction potential
interacting with bulk LO and IO phonons can be written
as:

H = H1 +H2, (1)

with

H1 = −
~2

2

∂

∂z

1

m(z)

∂

∂z
+ V (z) (2)

in which

m(z) =

{
m⊥1 for z > 0
m⊥2 for z < 0

, (3)

and

H2 =
p2
‖

2m‖1
θ(z) +

p2
‖

2m‖2
θ(−z) +

∑
k

~ω
L1
a†k1ak1θ(z)

+
∑
k

~ω
L2
a†k2ak2θ(−z) +

∑
q,σ

~ωσb†qσbqσ

+
∑
k,λ

[
Bλ sin(kzz)

k
e−ik‖·ρa†kλ + h.c

]

+
∑
q,σ

[
Gσ
√
q
e−iq·ρe−q|z|b†qσ + h.c

]
. (4)

In equation (2), V (z) is the heterojunction potential
which can be determined self-consistently. Here, m⊥λ
and m‖λ are the band mass of the electron being in
material λ(λ = 1, 2) in the z-direction and in the x-y
plane respectively. In equation (4), σ = +(−) denotes
the branch of IO phonon modes with higher(lower) fre-
quency. The IO phonon frequencies can be obtained by
solving [17] ω2

± = (b ±
√
b2 − 4ac)/2a, in which a =

ε∞1 + ε∞2, b = ε∞1(ω2
L1 + ω2

T2) + ε∞2(ω2
L2 + ω2

T1), and
c = ε∞1ω

2
L1ω

2
T2 + ε∞2ω

2
L2ω

2
T1. Here, ωLλ ( ωTλ) is the LO

(TO) phonon frequency of the λ’th material. ε0λ and ε∞λ
are respectively the static and optical dielectric constants
of the λ’th material. The interaction factors between an
electron and bulk LO and IO phonons: Bλ and Gσ satisfy

Bλ = −i

[
4πe2

V
~ω

Lλ

(
1

ε∞λ
−

1

ε0λ

)]1/2

θ(λ, z) (5)

with

θ(λ, z) =

{
θ(z) for λ = 1
θ(−z) for λ = 2

, (6)

and

Gσ = i

(
1

δ2
1 + δ2

2

2π~e2

Sωσ

)1/2

, (7)

where δλ = (ε0λ − ε∞λ)1/2ωTλ/(ω
2
Tλ − ω2

σ). In equa-
tions (4, 6), θ(±z) is a step function.

2.1 Displacement oscillator transformation with the
coupling in the z direction

We adopt

U1 = exp

 i
~

P‖ − ~
∑
k,λ

k‖a
†
kλakλθ(λ, z)

−~
∑
q,σ

qb†qσbqσ

)
· ρ

]
, (8)
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and, following reference [15] but more appropriate for this
work,

U2 = exp

∑
k,λ

(
fkλe

−ikzza†kλ − f
∗
kλe

ikzzakλ

)
θ(λ, z)

+
∑
q,σ

(
gqσb

†
qσ − g

∗
qσbqσ

)]
(9)

to perform two unitary transformations on Hamilto-
nian (1) and obtain the expectation value of energy:

E = 〈ψ | U−1
2 U−1

1 HU1U2 | ψ〉 = E1 +E2, (10)

where

| ψ〉 =| ζ(z)〉 | 0〉 =| ζ(z)〉
∏

k,λ,q,σ

| 0k〉 | 0qσ〉. (11)

In equation (9) fkλ, gqσ and their complex conjugate are
variational parameters. In equation (11), | 0〉 is the phonon
vacuum state. The subband envelope function in the z
direction for electrons in the ground state is |ζ(z)〉. It is
given by

ζ(z) =

{
ζA(z) = Bb1/2(bz + β)e−bz/2 for z > 0

ζB(z) = B′b′
1/2
eb
′z/2 for z < 0,

(12)

where B, b, β, B′ and b′ are variational parameters
[22,23] among which only b and b′ are independent, while
the rest are obtained through normalization and boundary
conditions.

Minimizing equation (10) with respect to f and g, we
obtain

E1 = 〈ζ(z) | −
~2

2

∂

∂z

1

m(z)

∂

∂z
+ V (z) | ζ(z)〉, (13)

and

E2 =
P 2
‖

2m∗‖
+

p2
z

2m⊥

CLO

1 + CLO
+ELO +EI . (14)

In equation (14), P‖ is the eigenvalue of the total momen-
tum operator projection in the x-y plane. The polaron
effective mass parallel to the plane is given by

m∗‖ = m‖(1 +∆m
LO

+∆m
I
), (15)

where the average electron band mass parallel to the x-y
plane is defined as m‖ = m‖1m‖2/(m‖1P 2 +m‖2P 1). Here

P 1 =
∫∞

0 | ζA(z) |2 dz and P 2 =
∫ 0

−∞ | ζB(z) |2 dz are
respectively the electron probabilities of being in material
1 and material 2. The contributions from LO and interface
phonons to the effective mass are given by

∆m
LO

= 2
~2

m‖

∑
k

|φ
B

(kz)|
2
k2
‖ cos2(θ)(

~ω
L1
P 1 + ~ω
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P 2 +

~2k2
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+
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z
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)3 ,

(16)

and

∆m
I

= 2
~2

m‖

∑
q,σ

|φ
G

(σ, q)|2 q2 cos2(θ)(
~ωσ + ~2q2

2m‖

)3 , (17)

where θ is the angle between P‖ and the wave vec-
tors in the x-y plane. To simplify our calculation, we
notice that fkλ is given in a form such as fkλ =
aλ/bλ. We assume without proof that fk1 ∼ fk2 =
fk (the probability of emitting or absorbing a bulk
phonon of the electron in material 1 equals that in ma-
terial 2) so that fk is given by the proper form fk =
a1+a2

a1+a2
. This is consistent with the straight simplifica-

tion exp
[∑

k,λ

(
fkλe

−ikzza†kλ − f
∗
kλe

ikzzakλ

)
θ(λ, z)

]
→

exp
[∑

k,λ

(
fke
−ikzza†kλ − f

∗
ke
ikzzakλ

)
θ(λ, z)

]
in equa-

tion (9). Thus this is a reasonable approximation. The
second term of equation (14) is the contribution from
bulk LO phonons to the electron motion in the z di-
rection. For the quantized energy level and the weak
coupling between the electron and LO phonons, this
term is not important. The numerically computed value
of this term is less than 10−1 meV, which is negligi-
ble. In equation (14), we have used the definition pz =
〈ζA(z)|pz|ζA(z)〉m⊥/m⊥1 + 〈ζB(z)|pz|ζB(z)〉m⊥/m⊥2, in
whichm⊥ = m⊥1m⊥2/(m⊥1P 2+m⊥2P 1), with the caveat
that it is the magnitude of pz that is used. CLO reads

CLO = 2
~2

m⊥

∑
k

|φ
B

(kz)|
2
k2
z(
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L2
P 2 +

~2k2
‖

2m‖
+
~2k2

z

2m⊥

)3 ·

(18)

The third and the forth term of equation (14) are the self
energies of the polaron due to the contribution from LO
and interface phonons respectively and are given by

ELO = −
∑
k

|φ
B

(kz)|
2

~ω
L1
P 1 + ~ω

L2
P 2 +

~2k2
‖

2m‖
+
~2k2

z

2m⊥

, (19)

and

EI = −
∑
q,σ

|φ
G

(σ, q)|2

~ωσ + ~2q2

2m‖

· (20)

In the above equations, we have adopted the following
notations:

φ
B

(kz) =
∑
λ

〈ζ(z) |
Bλ sin(kzz)eikzz

k
| ζ(z)〉, (21)

and

φG(σ, q) = 〈ζ(z) |
Gσe

−q|z|

√
q

| ζ(z)〉. (22)

To determine the ground state energy, equation (10),
we should solve equation (13) self-consistently to obtain
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the variational parameters b and b′ using the envelope
function of equation (12). In equation (13), the hetero-
junction potential can be written as

V (z) = V0θ(−z) + Vs(z) + Vd(z), (23)

in which V0 is the potential barrier height, Vs(z) the elec-
tron contribution to the potential and Vd(z) the respective
depletion charge contribution. The latter two terms can be
obtained from

∂

∂z
ε0(z)

∂

∂z
Vs(z) = −4πe2Ns | ζ(z) |2, (24)

and

∂

∂z
ε0(z)

∂

∂z
Vd(z) = −4πe2 [NA(z)−ND(z)] , (25)

where Ns is the areal electron density, NA(z) and ND(z)
the position dependent acceptor and donor concentra-
tions. For the heterojunction system under consideration,
E1 has been analytically solved and is written simply
as [23]:

E1 = 〈T 〉00 + 〈Vd〉00 + 〈Vs〉00 + 〈V0〉00, (26)

where the subscript double zeros represent the matrix el-
ements of equation (13). In equation (26),

〈T 〉00 =
~2

2

[
(Bb)2(1+β−β2/2)/2m⊥1−(B′b′)2/4m⊥2

]
,

(27)

〈Vd〉00 = 4πe2Nd

[
−B

′2/b′ε02 +B2
(
6 + 4β + β2)/bε01

)]
,

(28)

〈Vs〉00 = 4πe2Ns

[
B
′2
(

1−B
′2/2

)
/b′ε02

+B4
(
33 + 50β + 34β2 + 12β3 + 2β4

)
/4bε01

]
,

(29)

and

〈V0〉00 = V0B
′2. (30)

The polaronic effect, equation (14), on the electron states
can be finally obtained by minimizing the total energy

ET = E1 +E2 − 〈Vs〉00/2 (31)

with respect to the variational parameters b and b′.

2.2 Displacement oscillator transformation without
the coupling in the z direction

We turn next to the second unitary transformation of
equation (9) but without the phase factor [8,16]:

U2 = exp

∑
k,λ

(
fka
†
kλ − f

∗
kakλ

)
θ(λ, z)

+
∑
q,σ

(
gqσb

†
qσ − g

∗
qσbqσ

)]
(32)

and repeat the procedure described in Section 2.1.
Equation (14) becomes

E2 =
P 2
‖

2m∗‖
+ELO +EI , (33)

where the contribution from LO phonons (Eq. (19)) is
given by

ELO = −
∑
k

|φ
B

(kz)|
2

~ω
L1
P 1 + ~ω

L2
P 2 +

~2k2
‖

2m‖

· (34)

Thus, the coupling between the electron and bulk phonons
in the z direction has been neglected when one estimates
the properties in the x-y plane.

The correction due to the bulk LO phonons to the
polaron effective mass in equation (15) becomes

∆mLO = 2
~2

m‖

∑
k

|φ
B

(kz)|
2
k2
‖ cos2(θ)(

~ω
L1
P 1 + ~ω

L2
P 2 +

~2k2
‖

2m‖

)3 · (35)

In equations (34, 35), we have used the notation

φ
B

(kz) =
∑
λ

〈ζ(z)|
Bλ sin(kzz)

k
|ζ(z)〉, (36)

in contrast to equation (21). The rest of the quantities
remain as given in the previous subsection.

3 Simplified coherent potential approximation
(SCPA)

For a TMC A1−xBx (Zn1−xCdxSe) consisting of II-VI
compounds A (ZnSe) and B (CdSe), the virtual crystal
approximation (VCA) is not expected to be valid [25]. Let
EA (EB) be the energy associated with a II-VI compound
A (B). Then in the TMC system we make the ansatz that
the corresponding energy is given by the solution of the
CPA-like form [26,27]

Σ = E − (EA −Σ)F (EB −Σ), (37)

where

E = xEB + (1− x)EA (38)

is the VCA approximation energy. We take F in the real
form

F =
1

Z −Σ
· (39)

If we further choose Z to have a null value, equation (37)
can be solved analytically as

ETMC =
EAEB

EA +EB −E
· (40)
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Fig. 1. The energy band gap Eg in units of eV of TMC
Zn1−xCdxSe as a function of x. The solid line is the result
calculated using SCPA. The long dashed line is the unstrained
TMC result from Liaci [19]. The short dashed line is the linear
interpolated or the VCA result.

For a slow moving electron in the TMC system, the effec-
tive mass approximation and the parabolic approximation
for the energy band are still valid. Inserting the electron
kinetic energy Ek = ~2k2/2m into equation (40), we ob-
tain the TMC electron band mass

m
TMC

= xm
B

+ (1− x)m
A
, (41)

which is the same as the result obtained using the linear
interpolation of reference [20] or the VCA.

Similarly, inserting the binding energy of a hydrogen-
like impurity into equation (40), we derive the TMC di-
electric constant

ε
TMC

=[((1− x)m
B
ε2
A

+xm
A
ε2
B

)(x/m
A

+(1−x)/m
B

)]1/2.
(42)

Adopting to the 70:30 rule [20] and using equation (40),
we obtain the heterojunction barrier height

V0 = 0.7× (EgA −EgTMC ). (43)

4 Results and discussion

The numerical computation is performed on a
Zn1−xCdxSe/ZnSe system in which x ranges from
0.05 to 1 so that our interface polaron model is expected
to be properly treated. The parameters used in this work
are given in Table 1. The SCPA is used to obtain the
parameters of the TMC and the barrier height of the
heterojunction. In the calculation, we take the band mass
of the electron isotropic: m‖ = m⊥.

The energy band gap of TMC Zn1−xCdxSe as a func-
tion of x is plotted in Figure 1. It can be seen that the
SCPA result by equation (40) is in better agreement with
the unstrained TMC result [19]. The barrier height is given
in Figure 2. This figure contains the SCPA result for the
full range of x. In contrast and in comparison we show the

Fig. 2. The barrier potential V0 of Zn1−xCdxSe/ZnSe hetero-
junction as a function of x. The dashed line is the result, which
is believed to be valid for x < 0.22, with the strain effect from
Liaci [19]. The solid line is the SCPA prediction for the full
range of x.

Fig. 3. Heterojunction potential (dashed line) in units of
Eb = me4/2~2ε20 = 35.25 meV and the electron (solid line)
envelope function in units of 1/kb(kb = (2mEb/~2)1/2 =
3.966 × 106 cm−1) versus distance z in units of 1/kb for
Ns = 4× 1011 cm−2, Nd = 1× 1010 cm−2 and x = 0.1.

Liaci [19] result with strain effect which is only good for
x < 0.22. In our work, we use the SCPA result.

For typical values of areal electron density Ns =
4× 1011 cm−2, areal depletion charge concentration Nd =
1 × 1010 cm−2, and Cd concentration x = 0.1, the self-
consistent results of the heterojunction potential and the
electron envelope function versus z are given in Figure 3.

The polaron ground state energies Egs,a and Egs,b cal-
culated using the result in Sections 2.1 and 2.2 as a func-
tion of Ns for x = 0.1 and Nd = 1 × 1010 cm−2 is given
in Figure 4. There is only a negligible difference existing
between Egs,a and Egs,b even though Egs,b is less than
Egs,b in the range calculated.

As shown in equations (14, 33), the polaron self en-
ergy lowers the bare conduction electron energy in the
x − y direction. We compute this contribution for small
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Table 1. Parameters used in computation.

Quantities ZnSe(A) CdSe(B) Zn1−xCdxSed

Eg (eV) 2.82a 1.80a EgAEgB/(EgB(1− x) + xEgA)

m(me) 0.17b 0.13b xmB + (1− x)mA

ε0 8.1b 9.6b
[(

(1− x)mBε
2
0A

+ xmAε
2
0B

)
(x/mA + (1− x)/mB)

]1/2
ε∞ 5.9b 5.98b

[(
(1− x)mBε

2
∞A

+ xmAε
2
∞B

)
(x/mA + (1− x)/mB )

]1/2
~ωL(meV) 31b 27b ~ωLAωLB/(ωLB (1− x) + xωLA)

~ωT (meV) 25.5c 21.3c ~ωTAωTB/(ωTB (1− x) + xωTA)
a Reference [19].
b Reference [17].
c Evaluated by LST relation ωT = ωL(ε∞/ε0)1/2.
d SCPA.

Fig. 4. The polaron ground state energies Egs,a and Egs,b in
units of meV as functions of Ns in units of cm−2 for x = 0.1
and Nd = 1×1010 cm−2. EF,a and EF,b are the Fermi energies.
The subscripts a and b correspond to the results of Sections 2.1
and 2.2 respectively.

P‖ case. Figure 5 gives the polaron self energies equa-
tions (19, 20, 34) versus Ns for a typical heterojunction
with x = 0.1 and Nd = 1 × 1010 cm−2. It is shown from
the results of Section 2.1 that the contribution from LO
phonons −ELO decreases whereas the contribution from
IO phonons −EI increases with increasing Ns. This prop-
erty can be easily understood since the energy band bend-
ing becomes more noticeable with increasing Ns. This ef-
fect forces the electrons to move towards the interface.
For x = 0.1, the electron coupling with IO phonons is
weaker than the coupling with bulk LO phonons for small
Ns. The opposite situation happens for large Ns. As a su-
perposition, the total negative self energy first decreases
then increases as Ns increases. In contrast with this, the
result obtained in Section 2.2 shows that the contribu-
tion from LO phonons increases with Ns in the region of
Ns < 1.7 × 1011 cm−2. This is physically unacceptable.
The two curves of the total self energy obtained in Sec-
tions 2.1 and 2.2 intersect around Ns = 2.6× 1011 cm−2.

Fig. 5. The polaron self energies in units of meV as functions
of Ns in units of cm−2 for x = 0.1. Etotal = ELO +EI . Curves
labeled a and b correspond to the results of Sections 2.1 and
2.2 respectively.

In the region of Ns < 2.6×1011 cm−2, equation (19) gives
a more reasonable description of the contribution from the
bulk LO phonons. When Ns > 2.6 × 1011 cm−2, the LO
phonon contribution calculated from equation (34) also
decreases as Ns increases, which is physically acceptable.
Since equation (34) gives a lower total energy, it is ex-
pected to give more reasonable results when the electron
is nearer the interface. On the other hand, the difference
between the results obtained from equation (19) and from
equation (34) is small within Ns > 1.7× 1011 cm−2. It in-
dicates that equation (19) also gives an acceptable result.

The average distance between an electron and the in-
terface z = 〈ζA(z)|z|ζA(z)〉 + 〈ζB(z)|z|ζB(z)〉 as a func-
tion of Ns is given in Figure 6. It can be seen that as
Ns increases the average distance z decreases rapidly at
small Ns, then decreases slowly due to the comparatively
stronger repulsion of the barrier at large Ns. In the re-
gion of small z, the electron penetration into the barrier
side is expected to give a direct influence on the polaron
effect. The z’s obtained using the results in Sections 2.1
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Fig. 6. The average distance between an electron and the in-
terface z in units of cm as a function of Ns in units of cm−2

for x = 0.1. Curves labeled a and b are calculated by using the
results of Sections 2.1 and 2.2 respectively.

and 2.2 do not show an obvious difference with increas-
ing Ns. This results in a close agreement between the IO
phonon contributions obtained by the two methods.

The influence of LO phonons causes the electrons to
move into the channel side, while the effect of the interface
phonons is to attract them towards the interface. The LO
phonons play a more important role in the competition
for small Ns, whereas IO phonons are dominant for large
Ns. With an increase in Ns, the fast decay of the con-
tribution from LO phonons is responsible for total nega-
tive self energy decrease within a reasonable region. When
Ns > 1.7 × 1011 cm−2, the total negative self energy in-
creases with Ns due to the slow decay of LO phonon influ-
ence and the comparatively fast increase of the IO phonon
contribution.

Figure 7 shows the phonon contributions to the po-
laron effective mass as functions of Ns for x = 0.1 and
Nd > 1 × 1010 cm−2. The behavior of the contributions
from bulk LO phonons, ∆m

LO
, and interface phonons,

∆m
I
, versus Ns is similar to that of the polaron self en-

ergies (Fig. 5). The results show that the contributions
from LO phonons using equations (16, 35) have an ob-
vious difference. This indicates that the polaron effective
mass m‖ is sensitive to the influence from the coupling in
the z direction. This complex quasi 2D property needs to
be investigated further both theoretically and experimen-
tally.

For the given Ns = 4 × 1011 cm−2 and Nd = 1 ×
1010 cm−2, the polaron ground state energy, self energy
and effective mass corrections versus x (0.05 ≤ x ≤ 1)
are given in Figures 8, 9 and 10, respectively. That the
result of Section 2.2 gives lower ground state energy for
larger x indicates the model of Section 2.2 is more suitable
for a system with 2D properties. The contributions from
both the bulk LO and IO phonons are almost constant at
large x because the electron position in the z direction is
no longer sensitive to the Cd concentration when the bar-
rier is high enough. Meanwhile, the influences from bulk

Fig. 7. The polaron effective mass corrections as functions of
Ns in units of cm−2 for x = 0.1. ∆mtotal = ∆mLO + ∆mI .
The subscripts a and b correspond to the results of Sections 2.1
and 2.2 respectively.

Fig. 8. The polaron ground state energies Egs,a and Egs,b in
units of meV as functions of x for Ns = 4 × 1011 cm−2 and
Nd = 1×1010 cm−2. EF,a and EF,b are the Fermi energies. The
subscripts a and b correspond to the results of Sections 2.1 and
2.2 respectively.

LO and IO phonons are comparable even though the LO
phonons become dominant.

In Figures 9 and 10 the polaron self energies and effec-
tive masses obtained for two models are also plotted. One
case is the 3D bulk LO phonon model, the other is the
purely 2D IO phonon model. This shows that the present
quasi 2D realistic model of Section 2.1 obtains weakened
polaron effects.

In the limit of b ∼ b′ → ∞ for the envelope function
equation (12), the bulk LO phonon contributions ELO →
0 and ∆m

LO
→ 0 in equations (14, 33, 15). The polaron

self energy has only one part from the IO phonon modes
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Fig. 9. The polaron self energies in units of meV as functions
of x for Ns = 4×1011 cm−2 and Nd = 1×1010 cm−2. Etotal =
ELO +EI . The subscripts a and b correspond to the results of
Sections 2.1 and 2.2. E3DLO and E2DIO are the self energies
obtained using the 3D bulk LO phonon model and the purely
2D IO phonon model respectively.

Fig. 10. The phonon contributions to polaron effective mass as
functions of x for Ns = 4×1011 cm−2 and Nd = 1×1010 cm−2.
∆mtotal = ∆mLO + ∆mI . The subscripts a and b correspond
to the results of Sections 2.1 and 2.2. ∆m3DLO and ∆m2DIO

are the effective masses obtained using the 3D bulk LO phonon
model and the purely 2D IO phonon model respectively.

and reads

EI = −
π

2

∑
σ

~ωσασ, (44)

where ασ = 2e2m
1/2
‖ /

[
(δ2

1 + δ2
2)~3/2ω

5/2
σ

]
is the dimen-

sionless electron-IO-phonon coupling constant. The po-
laron effective mass parallel to x− y plane is given by

m∗‖ = m‖(1 +
π

8

∑
σ

ασ). (45)

Equations (44, 45) are the expected 2D interface polaron
result [17].

5 Conclusion

We have employed a self-consistent heterojunction po-
tential to investigate the interface polaron effect contri-
bution to the electronic ground state of a single het-
erostructure. An LLP-like variational method is used to
obtain the polaron self energy and effective mass paral-
lel to the interface. The numerical computation is per-
formed for Zn1−xCdxSe/ZnSe heterojunction with the Cd
concentration in the range of 0.05 ≤ x ≤ 1. A simpli-
fied coherent potential approximation is developed to ob-
tain the energy band gap, the dielectric constants and
the band mass of the electron of the II-VI ternary mixed
crystals. It is found that the interface polaron effects are
weaker than the three dimension bulk polaron effects in
the Zn1−xCdxSe material. While the bulk longitudinal op-
tical phonons, for small Cd concentration, give the main
contribution at low areal electron density, the interface
phonon modes becomes dominant for high areal electron
density. The interface phonons play a more important role
than they do in III-V compound heterojunctions such as
GaAs/AlxGa1−xAs [24].
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